
INTERNATIONAL JOURNAL NATURAL AND APPLIED SCIENCES (IJNAS), VOL. 4, NOS.1& 2 (2009); P. 93 – 100, 2 FIGS.

Analysis of the UNIX operating system and improvement of the password authentication technique

 I. E. Eteng*
1
, F. U. Ogban

1
 and H. Bassey

1

INTRODUCTION
 An operating system presents the computer user with an equivalent

of an extended machine or virtual machine that makes it a lot easier to

programme and make general use of the computer. This set of manual

and automatic procedures also enable a group of people to share a

computer installation efficiently. Most times people compete for use

of physical resources such as processor time, storage space and

peripheral devices; at other times people can co-operate by

exchanging programmes and data on the same installation. The

operating system makes these activities tolerable.

 An operating system must have a policy for choosing the order in

which competing users are served and for resolving the conflicts of

simultaneous requests for the same resources; it must also have a way

of enforcing this policy in spite of the presence of erroneous or

malicious user programmes and access(Per, 1990). The simultaneous

presence of data and programmes belonging to different users requires

that an operating system protect users against each other. This task the

operating system must perform automatically.

 The UNIX operating system is a multitasking, multi-user and highly

portable operating system that provides a powerful and hospitable

program development environment. It controls the computer resources

and provides a base upon which the application program runs. The

UNIX operating system uses a hierarchical file system that is

organized as a tree with the root node called “The Root” and

represented by a single „/‟ (slash). The hierarchical file system has the

„root‟ file system at the top of the hierarchy of files and this file

system is the key to the UNIX operating system. File systems often

contain information that is highly valuable to their users. Therefore

protecting this information against unauthorized usage is a major

concern of all file systems with UNIX inclusive.

 One of the most important security features used today are

passwords. It is important to have secure, ungues sable passwords.

 However secure and unguessable the password may seem, it is

pertinent to have in place a system that can authenticate the password

whenever it is being used to log on the system..

 However, the problem with passwords is that they are easily

transferable with the owner‟s connivance and most times

unfortunately, without owner‟s permission. Therefore, though

passwords have been and are used widely in the computer world, it is

the easiest to compromise. However, the real problem with the use of

passwords is that they are transferable and substantially static. Users

with or without agreements can end up transferring the password to a

third party who can then pretend to be the genuine user. Indeed the

worst feature of all is the inability after the event to prove what really

happened. There exists no simple way to determine who actually gave

the password. The vulnerability of passwords is due entirely to their

predictability. The adoption of procedures (authentication techniques)

that reduce this must form the basis of any security strategy.

 The UNIX operating system was the fallout of the quest by MIT

(MASSACHUSETTS Institute of Technology), Bell laboratories and

The UNIX operating system‟s main thrust was providing a convenient

working environment for programming. In addition to gaining wide

acceptance, particularly in the academic world UNIX has influenced

the design of many modern Operating Systems.

 UNIX has a long history as an open development environment.

UNIX performs the typical operating system task, but also includes a

standard set of commands and library interfaces. The building block

approach of UNIX makes it an ideal system for creating new

applications. The traditional operating system consists of a small

kernel that runs processes such as user applications and services.

ABSTRACT

The UNIX operating system is an operating system that safeguards against illegal access and other threats to the computer system. In this
paper, the UNIX file system is analyzed, the security weaknesses are x-rayed, an improved one-time password authentication technique is
presented, and the underlying model used for the design is described. Moreover, a password authentication programme was designed which
implements an improvement of the general one-time password technique. Passwords, which are individually selected by users from a
codebook are now randomly selected by the system for the user in the improved programme. Real-data entries into the programme
demonstrate an enhancement of the security of the system even on the event of the loss of the codebook.

*
Corresponding author

Manuscript received by the Editor August 3, 2007; revised manuscript accepted July 21, 2008.
1
Department of Mathematics/Statistics and Computer Science University of Calabar, Calabar, Nigeria

© 2009 International Journal of Natural and Applied Sciences (IJNAS). All rights reserved.

93

Eteng et al.

The UNIX kernel is a solid core that changes little from system to

system, while processes are added at the user‟s discretion. This makes

upgrades easier since the entire operating system does not need to be

recompiled.(Thomas, et al 1996)

Motivation

 The major motivation for this work was that in spite of the fact that

the UNIX Operating System is over thirty seven (37) years old, the

UNIX operating system has continued to attain wide spread

popularity. Though traditionally used on minicomputers and

workstations in the academic community. UNIX is now available in

personal computers. Previous PC and mainframe users are now

looking to UNIX as their operating system solution.

 Another feature of UNIX that motivated this work is that the UNIX

implementation now includes TCP/IP and support for Ethernet. UNIX

therefore provides in one package the ability to install a powerful

operating system on a computer that lets user‟s computers through

one of the most common and powerful networking protocols in the

industry.

Our contribution

 Our major contributions in the work include the following;

(1) Knowledge of the security flaws in the UNIX operating

system has been highlighted.

(2) Knowledge of the counter measures against security

weakness of the UNIX operating system has been gained.

(3) The UNIX password system has been improved upon.

(4) An intrinsic knowledge of the UNIX file system has been

provided.

BACKGROUND AND LITERATURE REVIEW

 UNIX is a trademark of AT and T Bell laboratories now known as

Lucent Technologies (Bourne, 1983). According to the designers, the

file system is the key to UNIX. It offers compatible devices, file and

inter-process input/output. In essence, the user simply sends and

receives data. All data are treated as strings of bytes and no physical

structure is imposed by the system, instead by the data. The result is a

considerable freedom from any concern for physical input/output

(Davies, 1992).

 UNIX is a multiple-user operating system in which commands are

processed by a shell that lies between the user and the resident

operating system (fig. 2.1). The shell is not really part of the operating

system. The idea of a command processor that is independent from

the operating system was an important UNIX innovation (Sobell,

1989).

 A UNIX user communicates with the system through a shell.

Essentially through a command interpreter, the shell is treated much

like an application programme and is technically not part of the

operating system (Sobell, 1989). This allows a user to replace the

standard shell with a custom shell. The Bourne shell can be replaced

with a custom shell having a graphic user interface (GUI) with icons

or menus replacing traditional commands (Manger, 1992).

 Among its resident modules, UNIX contains an input/output control

system, a file system, and routines to swap segments, handles

interrupts, schedules the processor‟s time, manages memory space

and allocates peripherals device (Bourne, 1983). Additionally, the

operating system maintains several tables to track the system‟s status.

Routines that communicate directly with the hardware are

concentrated in a relatively small kernel (Fig2.1). The kernel is

hardware dependent and varies from system to system. However, the

interface to the kernel is generally consistent across implementation.

UNIX is a time-sharing system with programme segments swapped in

an out of memory as required (Bourne, 1983). To ensure reasonable

response tune, processor access is limited by time slicing.

Segmentations is the most addressing scheme, and most UNIX

systems implement virtual memory techniques (Sobell, 1989).

 The key to the UNIX operating system is the file. UNIX handles

files as it has done since its inception in 1969, namely by allowing

users‟ access to them from the command line. Secondly the new

graphical user interface that sits atop the UNIX allows the handling of

files graphically through the use of icons (Southerton., 1993).

General feature of UNIX file system

 The UNIX file system manages all the data stored on the System‟s

mass strong devices. UNIX provides a built-in protection system

against unauthorized access to file by allowing the root or super-user

to assign permission to file (Southerton, 1993). From the command

line, the user can determine the permission level of a file by using the

“ is ” command (list command) to list the file and examine a coded

format (Andrew, 1990).

Hierarchical structure: The UNIX system organizes the file using an

upside-down hierarchical tree structure. All files will have a „parent‟

file, apart from a directory called the „root‟ directory, which is the

parent of all file on the system. The hierarchical component also adds

to the dynamic flexibility of the file-system.

Structure less files: Files are also said to be structure-less, since the

utility that creates the file normally dictates the internal format of that

file.

Dynamic file expression: The file-system structure is dynamic. Its

size is not determined by any rule other than the amount of disk

storage that is available on the system. A file size can be changed at

will by the user at any time.

Security: Files are protected using file ownership mechanism. This

allows only a specific class of users to access certain files.

94

Analysis of the UNIX Operating System

The shell and shell scripts

 The UNIX Shell is a customized command line interpreter. UNIX

commands are processed by a shell, usually, the shell starts a

command as soon as it is entered and then waits for it to terminate

before displaying the next prompt. The idea of a custom shell was an

important UNIX innovation (Sobell, 1989). When a user logs on, the

shell overlays the login, process text and data segment, but the system

data segment is not affected. Thus the shell standard input, output and

error files are open. The result is that the user can begin issuing

commands without opening these standard files (Bourne, 1983).

 Many data processing applications are run daily, weekly or at other

regular intends. Some are repeated many times for example a

programme treat. When such applications are run, a set of command

must issued repeating the application means repeating the commands.

Retyping the same commands repeatedly can be frustrating and error

prone. The option is to write a shell script a shell scripts is to write a

shell script is to write a shell script. A shell script is a file that consists

of series of commands. The shell is actually a highly sophisticated

interpretive programming language, with its now variables,

expressions, sequence, decision and repetitive structure

 (Southerton, 1993).

Security issues

 In the ever-changing world of global data communication,

inexpensive Internet connection and fast paced software development,

security is becoming more and more an issue. Security is now a basic

requirement because global computing is inherently insecure.

Unintended individuals may gain access to a computer and

maliciously intercept, alter or transform data into something not

intended.

 Additionally, unauthorized access to the system may be obtained by

an intruder, known as crackers, who then use advanced knowledge to

impersonate, steal information or even deny the legitimate user

access. Through the need to ensure security of a system is worthy,

however it should be noted that no computer system can ever be

completely secure. All that can be done is to make it increasingly

difficult for a security compromise to occur.

 Unfortunately, UNIX was not designed with security is mind, but a

UNIX system can be made secure if the correct procedures are

adopted. The problem of Security is UNIX‟s flexibility as an

operating system (Pfleeger, 1989). Its versatile file-system structure

allows users to browse extensively through many of the systems file.

It is also commonly found that non-privileged user have access to

administrative tools simply because the correct access permissions is

not set on the relevant file. The issues is UNIX security can be viewed

as two categories; Issues related to protecting the system from the

user/owner/ any multi-user system requires real security among other

things protect user from greenhorns.

 The most important way to safeguard a system is to limit access to

dangerous functions (Wood, et al., 1983). This can be achieved by

login as root only as root only when absolutely necessary and by

creating administrative logins for each of the system administration

functions (Southerton, 1993). Equally important is the need to ensure

that the root password is known to only trusted persons.

File system security

 Despite very good efforts at establishing and implementing a good

security strategy, the operating system can still be broken into. A

cracker‟s goal is to ensure continued access once access has been

gained by breaking a user‟s password it could be charged to

something more secure. Another way the cracker might ensure

continued access is to install new accounts on the computer. If access

is gained by breaking a user‟s password it could be changed to

something more secure. A good file system security helps prevent or

detect these modifications and discovery from a break in (Lane,

1993). System configuration files may be writable by users other than

the root. Also device files may have insecure file permission and

programmes, furthermore, configuration files may even be owned by

user other than root.

 Configuration files writable by non-root account may allow a

cracker to alter or changes system memory to gain more privileges,

snoop terminals, or by pass the normal UNIX files protection to read

files from or alter information on deal or tape storage (Smith, 1994).

A cracker can alter account. This is one of the reasons most breaches

of UNIX security take place at the file level because access

permission settings are not set correctly when the system is installed

or because file permission settings are inevitable changes a time for

various reasons (Manger, 1992). The failure to reset the permission

correctly leads to all kinds of security breaches. For instance the

“chimed” (change mode) command is used to alter access permission

settings of a particular file or group of files. The syntax is

 Chimed [options] <mode> <file…..> (*).

It is ideal that a UNIX system mountains proper file system security

(intension prevention), and also a means to detect unauthorized file

system changes (intrusion detection).

File permissions

 Security in UNIX is centered on the UNIX unified file system

concept. This is a concept, which treats device drivers, text files, and

communications channels are being streams of data accessible via a

file mane in the directory. Each UNIX file has a set of three

permissions. Via:

- Owner (U) Rights the owner has to access the file.

- Group (g) Rights the owner‟s group have to access the file.

95

Eteng et al.

- World (o) Rights other users have to access file.

This information is stored as a series of flags together with the

numeric ID of the owner and group of the files in a structure known as

the “inode” associated with each other.

User authentication

 Many protection schemes are based on the assumption that the

system knows the identity of each user. The problems of identifying

users when they log in is called User Authentication, most

authentication methods are based on identifying something the user

knows, something the user has, or something the user is.

 One of the most important security features used today are

passwords. Passwords are widely used form of authentication in

which the user is require to type a set of alphanumeric characters

which is then mapped by the system before login is permitted.

Password protection is easy to understand and easy to implement. In

UNIX it works like this. The login programme asks the user his name

and password. The passwords are immediately encrypted. The login

programme then reads the password file until it finds the line

containing the user‟s login name. if the encrypted password contained

in this line matches the encrypted password just computed, the logins

is permitted, otherwise it is refused.

 Bourne (1983) made a study of passwords on UNIX systems. They

compiled a list of likely password: First names, Last names, street

names, city names, words from a moderate – sized dictionary, valid

license plate numbers, words spelled backwards and short strings of

random characters.

 Each of them were then encrypted using know password encryption

algorithm and checked to see if any of the encrypted passwords

matched entries in their list. Order 86 percent of all passwords turned

up in their list. Therefore it is important that passwords should be as

secure and unguessable as possible one way this can be achieved is to

require / encourage users to pick better passwords and by having the

computer offer advice. Some computer have a programme that

generate random easy to pronounce nonsense words that can be used

as passwords. Eg fotally, garbuNgy or BipItry (some with upper case

and special characters). The most extreme form of password security

measures is the one-time password. When one-time passwords, are

used, the user gets a book containing a list of passwords. Each login

uses the next password in the list. If an intruder ever discovers a

password, it will not do him any good, since next time a different

password must be used. The real problem with the use of password is

that they are transferable and substantially static. User with or without

agreements can end up transferring the password to a third party who

can then purport to be the genuine user.

 It goes almost without saying that while a password is being type in,

computer should not display the typed in, the computer should not

 display the typed characters to keep them from prying eyes near the

terminal, unencrypted in the computer and even computer center

management should not have unencrypted password copies.

 Hence, we distinguish this paper by the following contributions.

The standard login command improves password security in two

ways:

 Incorrect login name response does not cause immediate errors,

thus preventing a remote hacker from rapidly determining that a

certain login name is valid on the machine.

 Password entries are not echoed (printed) by UNIX.

UNIX.

 UNIX password are stored in encrypted from in the / etc / password

file. While it is difficult to invert the cipher and procedure the

plaintext version of a password, it is comparatively easy to encrypt a

selection of possible password and compare them against the

encrypted string in / etc / passwd, a favourite crackers ploy. UNIX

attempt to lesson the severity of this attack by using a seed value

produced at the time of password change to modify the standard DES

algorithm to frustrate the use of hardware DES chipsets. This seed is

stored with the encrypted password in / etc / password. Thus two

users may have identical passwords, but due to differences in seeds

may have different encrypted forms. Hence plaintext search may

break one user‟s password but give no due to the fact that the other

user‟s password is identical.

 On recent version of UNIX, the programme / etc / pwck (password

validation) checks the password file for any inconsistencies

(Ferbrache, et al, 1992). The check include validation of the number

of fields, login name, user ID, and whether the login directory and the

programme / etc / grpck checks entries in the group files. The checks

include validation of the number of fields; group name, ID and

whether all login names appear in the password file. These

programmes should be run whenever a change is made to the

password or group file (Ferbrache, et al, 1992).

 METHOD OF STUDY

General one-time password aging

 The general one time password aging mechanism requires the user

to access the system with a new password during login depending on

the password life span. Usually the user is issued with a codebook

containing a list of password that is used serially and each used

password crossed off the list. The next password is then used at the

next login. The major drawback of this technique is the requirement to

use the password list serially and cross off. This makes it easy for

password sniffers, hacker (in the case of loss of the codebook) to

determine which password is to be used next.

96

Analysis of the UNIX Operating System

 A model to imitate the implementation of an improved

administrative technique, which protects against this drawback, is

created.

Simulation models

 In our work, we created models which formed the basis of the

design used for this work.

This one-time password aging technique modelled in fig.2 is an

improvement on the general one-time password aging mechanism. In

this model the new user (A) is made to undergo an identification

procedure with the system administrator (B). after the identification

procedure is completed, a list of serially numbered passwords is

generated and printed out for the new authorized user (C) in the form

of a codebook. The user (C) uses the first randomly chosen password

in his codebook at first long-in. simultaneously the user account (D)

demands the serial number for the next login password from the

system administrator randomly picks a password serial number, which

it sends to the user account (D). As user (C) log‟s out, the user

account (D) gives a prompt, which displays the next password login

serial number before log-out is completed.

 As an added security measure, the user who owns the codebook is

advised not to cross off used passwords. This feature is employed so

that if the book falls into the hands of unauthorized persons, they will

have a hard time guessing which password has been used or which

hasn‟t. The system is programmed to shut down if a wrong password

is entered up to three times.

System design

 The one-time password aging mechanism was originally designed in

a way that authorized users serially picked their passwords from a list

of numbered passwords were crossed off.

 In this system designed, passwords are not picked by the individual

user, but instead they are randomly chosen by the system

administrator for the user‟s use. Coding of this mechanism would

require the in-corporation of a number of modules.

Password generator

 This module generates passwords using a combination of

permissible characters e.g. upper and lower case letters, digits,

punctuation characters, control to form a password list of a specified

length. Password generated have keys i.e. serially numbered,

generated passwords are stored is a codebook.

Random number generator

 This generator generates passwords characters randomly to from

passwords which make up the password list. This generator also

randomly picks or generates password keys, which belong to specific

passwords. Passwords generated are allocated to user for subsequent

logins.

Allocator

 This module makes use if the random number generator to generate

a password key by which belongs to a password from the password

list. Chosen passwords are screened to verify if passwords have

already been used. If yes, another password key is generated until an

unused password is gotten. The password is then allocated to the user.

Merits of the improved one-time password

 The improved one-time password has a number of merits and

advantages over the general one time password. In the improved one

time password mechanism passwords are randomly chosen or selected

by the system from the codebook for the user to use, whereas in the

general one time password mechanism the passwords are chosen by

the user himself for use. After use, the user crosses off the used

password from the list of serially number passwords in the codebook.

The loophole in this technique is that if a user misplaces his codebook

or the codebook happens to be stolen, a malicious user or even a

hacker can easily log into the system easily without any sweat by

simply following the password sequence-using password next to the

last crossed off password. The hacker gains continued access to the

system since he now has the codebook and the system sees him as a

legitimate user.

 However, in the improved one time password technique, the

password sequence is not known although it is serially numbered.

Users are also advised not to cross off used passwords as an added

advantage. The legitimate user or a hacker does not know the order in

which the passwords are chosen since they are randomly selected by

the system from the codebook for use.

Note: The system also has a copy of the codebook. If by chance the

codebook is misplaced or stolen, the hacker will have a big problem

deciding which passwords have been used and which passwords have

not been used as well as not knowing which is the next valid

password for login.

 If the hacker keys in the wrong password thrice in an attempt to

grind out the password selection sequence or the next valid password,

the system automatically logs out and deactivates that particular

account. As an added advantage when the system randomly picks and

gives out a password, it does not give out the password itself but the

password number or key. The user knows which number of key

belongs to which password using his codebook. Onlookers or spies

will find it difficult knowing which is the actual password attached to

the number seen since they do not have the codebook.

Simulation of the password generator

 The password generator was simulated using the C++ programming

language. The major modules of this simulated programme were;

1) A codebook generator

2) A sample log in test utility

97

Eteng et al.

3) An exit option

Using the codebook generator

 The codebook generator creates a user codebook consisting of five

passwords. To generate a codebook, select the „Generate new

codebook‟ option from the main menu by entering a 1 at the menu

prompt. A codebook is created for the specified user. The codebook

created for the user is named in the following format; (user name)

codebktxt, and is stored in the current working directory (usually the

directory in which the programme was execute), where the system

administrator can access it.

Using the ‘login’ test utility

 The „Log in‟ test utility is part of the password generator

programme, it provides the user with a platform to test the access

control operations of the password generator making use of the

passwords generated for a given user by the book generator.

 To utilize these features, select the “Log in” option from the

programme main menu by entering a 2 at the menu prompt. The test

utility prompts for a username, which should be the name of a user

with an existing codebook. Following the user password to be

provided must come from the codebook that was generated for that

user.

Note: Once a password is used, it cannot be reused (For this reason,

they are called one-time passwords).

 The test utility allocates a password key to the user through which

the user determines the next password to use in the next “Login”

session. Also, if all password needs to be generated for that user.

The “Long in” test utility allows a maximum of three login attempts

before a user with an invalid password is denied access.

To exit the password generator programme

 Select the „Exit‟ option from the main menu display and a user is

automatically logged out.

RESULTS AND DISCUSSION

Creating a codebook for a user

 When a user name has been specified, the generate subroutines of

the password generator invoke the create Random Password routine

repeatedly to create a list of unique passwords. This list of passwords

is passed on to the SavePasswords routine of the File Handler module

which saves the passwords to a codebook and then invokes the encode

routine of the File Handler module to encrypt the codebook. An

unencrypted copy of the codebook is also stored for use by the system

administrator.

Logging in a user

When a user attempts to log in by providing a user name and

password. The Allocator module is given the user name, which it uses

to locate the user‟s codebook and this loads the password in the user‟s

codebook through a call to the File Handler module‟s getPasswords

routine. The checkPassword routine of the Allocator module is

invoked with the user password as an argument. This routine (that is,

the checkPassword routine) invokes the finPassword routine of the

searcher module to locate the specified password from the list of

passwords in the user codebook. On successful location of the

password, the deAllocate routine of the masker module is invoked to

mark the password as used.

The allocatePassword routine of the Allocator module is invoked to

allocate a new password key to the user. This routine starts by getting

a count of valid passwords left in the codebook through a call to the

search module‟s gatecount routine. If any valid passwords are

available, the random index pointing to any password in the user

codebook. The crosscheck routine of the searcher module is called to

confirm that the password at the randomly picked index is valid, if not

valid, the process is repeated by invoking the random number

generate again. On matching the index with a valid password, the

allocatPassword routine assigns the index value to the user as the key

to the next password.

CONCLUSION

 The UNIX operating system is a portable multiuser and rugged

operating system that provides a powerful programme development

environment. In spite of the ruggedness of the UNIX operating

system, this paper highlights the glairs of its password authentication

system, gives an overview of the UNIX file systems, proposes on

improved password authentication technique, provides a framework

for the implementation of this technique and demonstrates a

simulation of this technique.

98

Analysis of the UNIX Operating System

Fig. 1. Shell between the user and the resident Operating System

Fig. 2. Simulation model of the one-time password aging with an improved authentication technique

Shell

Kernel

Hardware

Resident

New User

(A)

System (B)

Administrator

Authorized User

(C)

Identification procedures

List of numbered passwords

Gives next password number

during log-out

D
em

an
d

s
n
ex

t
p
as

sw
o
rd

lo

g
-

in
 n

u
m

b
er

S
u

p
p

li
es

 n
ex

t
p
as

sw
o
rd

 l
o
g

-i
n

n
u
m

b
er

User

Account

Log-in

99

Eteng et al.

REFERENCES

Andrew, S. T. (1990). Operating systems: design and

 implementation, Prentice – Hall International inc., London.

Bourne, S. R. (1983). The UNIX system, Addison Wesley

 Publishing, New York.

Davies, D. W. and Price, W. L. (1989). Security for

 computer networks,(Second edition). John Wiley and Sons,

 Canada.

Davies, S. W. (1992). Operating systems: a systematic

 view, The Benjamin/Cumming Publishing Company, New York.

Ferbrache, D. and Shearer, G. (1992). UNIX system security,

 Butterworth-Heinemann Ltd., Oxford, London.

Manager, J. J. (1992). UNIXTM – the complete book

 guide for the professional user, Sogma Press. Wilmslow, England.

Per, B. H. (1990). Operating system principles,

 Prentice-Hall, International Inc., London.

Pfleeger, C. P. (1989). Security in computing, Prentice-

 Hall International Inc., New York.

Sobell, M. G. (1989). A practical guide to the UNIX system. The

 Benjamin/Comings Publishing Company,California.

Southerton, A. (1993). Modern UNIX, John Wiley and Sons

 Inc., Canada.

Thomas, R. and Yates, J .(1996.). User Guide to Unix, 2nd Edn.

 McGraw Hill (Asian Edition).

100

